Submission Open for IJEER Volume-3, Number-10, October 2019 | Submission Deadline- 20 October, 2019

International Journal for Empirical Education and Research

Integrative Potassium Humate and Biochar Application Reduces Salinity Effects and Contaminants, And Improves Growth and Yield of Eggplant Grown Under Saline Conditions

Author: Mostafa M. Rady | Published on: 2018-02-28 20:09:47   Page: 37-56   497

Abstract
In agriculture sector, soil salinity is one of the major problems that limit plant performance, particularly in arid and semiarid regions, including Egypt. The effect of potassium humate (KH) and casuarina biochar (Bch), applied singly or in integration, on plant performance, physio-biochemical attributes and antioxidant, and contents of contaminants of Solanum melongena plants grown under salt stress (EC = 6.96 – 7.08 dS m?1 ) was investigated. Results showed that, soil treatment with KH significantly improved plant growth and productivity, physio-biochemical attributes, and contents of K+ , osmoprotectants and antioxidants (soluble sugars, proline and ascorbic acid), and significantly lowered plant contents of contaminants (NO3 ? , NO2 ? and Cd2+) and Na+ ion compared to the untreated controls. The same results trend was obtained with soil treatment with Bch. Integrative application of KH + Bch was most effective compared to the single KH or Bch treatment. The above results recommended benefits of the integrative treatment KH+TOC to soil for the possibility of sustainable agronomic performance of eggplant grown on saline soils.

Keywords
Organic Substances; Pollutants; Eggplant Performance; Salinity.

Cite this Article

×

Rady, M., M (2018), Integrative Potassium Humate and Biochar Application Reduces Salinity Effects and Contaminants, And Improves Growth and Yield of Eggplant Grown Under Saline Conditions. International Journal For Empirical Education and Research, 2(7), 37-56.

  • Download Citation
  • ×

    Rady, M., M (2018) "Integrative Potassium Humate and Biochar Application Reduces Salinity Effects and Contaminants, And Improves Growth and Yield of Eggplant Grown Under Saline Conditions", International Journal For Empirical Education and Research, 2(7), pp.37-56.

  • Download Citation
  • ×

    Rady, M., M. Integrative Potassium Humate and Biochar Application Reduces Salinity Effects and Contaminants, And Improves Growth and Yield of Eggplant Grown Under Saline Conditions. International Journal For Empirical Education and Research. 2018; 2(7): 37-56.

  • Download Citation
  • ×

    Appeared

    ×

    Appeared

    ×

    Rady, M., M. Integrative Potassium Humate and Biochar Application Reduces Salinity Effects and Contaminants, And Improves Growth and Yield of Eggplant Grown Under Saline Conditions. International Journal For Empirical Education and Research. 2018; 2(7): 37-56.

  • Download Citation
  • ×

    Rady, M., M. Integrative Potassium Humate and Biochar Application Reduces Salinity Effects and Contaminants, And Improves Growth and Yield of Eggplant Grown Under Saline Conditions. International Journal For Empirical Education and Research. 2018; 2(7): 37-56.

  • Download Citation

  • Reference

    <!-- [if !supportLists]-->1.     <!--[endif]-->Rady MM, Bhavya Varma C, Howladar SM (2013). Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Sci Hortic 162: 63–70.

    <!-- [if !supportLists]-->2.     <!--[endif]-->Schwabe KA, Kan I, Knapp KC (2006). Drainwater management for salinity mitigation in irrigated agriculture. Amer J Agric Econom 88: 133–149.

    <!-- [if !supportLists]-->3.     <!--[endif]-->Bresler E, McNeal BL, Carter DL (1982). Saline and Sodic Soils. Springer-Verlag: Berlin.

    <!-- [if !supportLists]-->4.     <!--[endif]-->Maas EV (1984). Salt tolerance of plants. In the Handbook of Plant Science in Agriculture (Christie BR, ed.). CEC Press: Boca Raton, Fla.

    <!-- [if !supportLists]-->5.     <!--[endif]-->Rady MM, Mounzer OH, Alarcón JJ, Abdelhamid MT, Howladar SM (2016a). Growth, heavy metal status and yield of salt-stressed wheat (Triticum aestivum L.) plants as affected by the integrated application of bio-, organic and inorganic nitrogen-fertilizers. J Appl Bot Food Qual 89: 21–28.

    <!-- [if !supportLists]-->6.     <!--[endif]-->Rady MM (2011). Effects on growth, yield, and fruit quality in tomato (Lycopersicon esculentum Mill.) using a mixture of potassium humate and farmyard manure as an alternative to mineral-N fertiliser. J Hortic Sci Biotechnol 86(3): 249–254.

    <!-- [if !supportLists]-->7.     <!--[endif]-->McLaughlin MJ, Bell MJ, Wright GC, Cozens GD (2000). Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogea L.). Plant Soil 222: 51–58.

    <!-- [if !supportLists]-->8.     <!--[endif]-->Semida WM, Rady MM, Abd El-Mageed TA, Howladar SM, Abdelhamid MT (2015a). Alleviation of cadmium toxicity in common bean (Phaseolus vulgaris L.) plants by the exogenous application of salicylic acid. J Hortic Sci Biotechnol 90(1): 83–91.

    <!-- [if !supportLists]-->9.     <!--[endif]-->Semida WM, Abd El-Mageed TA, Howladar SM, Mohamed GF, Rady MM (2015b). Response of Solanum melongena l. seedlings grown under saline calcareous soil conditions to a new organo-mineral fertilizer. J Anim Plant Sci 25(2): 485–493.

    <!-- [if !supportLists]-->10.  <!--[endif]-->Rady MM, Semida WM, Hemida KhA, Abdelhamid MT (2016b). The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int J Recycl Org Waste Agric 5: 311–321.

    <!-- [if !supportLists]-->11.  <!--[endif]-->Hemida KhA, Eloufey AZA, Seif El-Yazal MA, Rady MM (2017). Integrated effect of potassium humate and α-tocopherol applications on soil characteristics and performance of Phaseolus vulgaris plants grown on a saline soil. Arch Agron Soil Sci 63(11): 1556–1571.

    <!-- [if !supportLists]-->12.  <!--[endif]-->Osman A, Rady MM (2012). Ameliorative effects of sulphur and humic acid on the growth, antioxidant levels, and yields of pea (Pisum sativum L.) plants grown in reclaimed saline soil. J Hortic Sci Biotechnol 87: 626–632.

    <!-- [if !supportLists]-->13.  <!--[endif]-->Osman A, Rady MM (2014). Effect of humic acid as an additive to growing media to enhance the production of eggplant and tomato transplants. J Hortic Sci Biotechnol 89: 237–244.

    <!-- [if !supportLists]-->14.  <!--[endif]-->Rady MM, Abd El-Mageed TA, Abdurrahman HA, Mahdi AH (2016c). Humic acid application improves field performance of cotton (Gossypium barbadense L.) under saline conditions. J Anim Plant Sci 26: 487–493.

    <!-- [if !supportLists]-->15.  <!--[endif]-->Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011). Biochar Effects on Soil Biota—A review. Soil Biol Biochem 43: 1812–1836.

    <!-- [if !supportLists]-->16.  <!--[endif]-->Major J, Rondon M, Molin D, Riha SJ, Lehmann J (2010). Maize Yield and Nutrition during 4 Years of Biochar Application to a Colombian Savanna Oxisol. Plant Soil 333: 117–128.

    <!-- [if !supportLists]-->17.  <!--[endif]-->Atkinson CJ, Fitzgerald JD, Hipps NA (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337: 1–18.

    <!-- [if !supportLists]-->18.  <!--[endif]-->Buss W, Kammann C, Koyro HW (2011). Biochar reduces copper toxicity in Chenopodium quinoa Willd. in a sandy soil. J Environ Qual 40: 1–9.

    <!-- [if !supportLists]-->19.  <!--[endif]-->Bradshaw AD, Chadwick MJ (1980). The Restoration of Land. Blackwell, Oxford, U.K.

    <!-- [if !supportLists]-->20.  <!--[endif]-->Page AI, Miller RH, Keeney DR (1982). Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. 2nd ed. Amer Soc Agron Madison, Wisconsin, USA.

    <!-- [if !supportLists]-->21.  <!--[endif]-->Klute A (1986). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy Madison, Wisconsin, USA.

    <!-- [if !supportLists]-->22.  <!--[endif]-->Dahnke WC, Whitney DA (1988). Measurement of soil salinity. In Recommended Chemical Soil Test Procedures for the North Central Region (Dahnke WC, Ed). North Central Regional Publication 221. North Dakota Agricultural Experiment Station Bulletin 499: 32–34.

    <!-- [if !supportLists]-->23.  <!--[endif]-->Arnon DI (1949). Copper enzymes in isolated chloroplast, polyphenol-oxidase in Beta vulgaris L. Plant Physiol 24: 1–5.

    <!-- [if !supportLists]-->24.  <!--[endif]-->Maxwell K, Johnson GN (2000). Chlorophyll fluorescence - a practical guide. J Exp Bot 51: 659–668.

    <!-- [if !supportLists]-->25.  <!--[endif]-->Clark AJ, Landolt W, Bucher JB, Strasser RJ (2000). Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ Pollut 109: 501–507.

    <!-- [if !supportLists]-->26.  <!--[endif]-->Weatherley PE (1950). Studies in the water relations of cotton. 1. The field measurement of water deficits in leaves. New Phytol 49: 81–97.

    <!-- [if !supportLists]-->27.  <!--[endif]-->Premachandra GS, Saneoka H, Ogata S (1990). Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. J Agric Sci 115: 63–66.

    <!-- [if !supportLists]-->28.  <!--[endif]-->Sullivan CY, Ross WM (1979). Selecting the drought and heat resistance in grain sorghum. In Stress Physiology in Crop Plants (Mussel H, Staples RC, Eds). John Wiley & Sons, New York, NY, USA, pp: 263–281.

    <!-- [if !supportLists]-->29.  <!--[endif]-->Irigoyen JJ, Emerich DW, Sanchezdiaz M (1992). Water-Stress Induced Changes in Concentrations of Proline and Total Soluble Sugars in Nodulated Alfalfa (Medicago sativa) Plants. Physiol Plant 84: 55–60.

    <!-- [if !supportLists]-->30.  <!--[endif]-->Bates LS, Waldeen RP, Teare ID (1973). Rapid determination of free proline for water stress studies. Plant Soil 39: 205–207.

    <!-- [if !supportLists]-->31.  <!--[endif]-->Mukherjee SP, Choudhuri MA (1983). Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58: 166–170.

    <!-- [if !supportLists]-->32.  <!--[endif]-->Sen NP, Donalds B (1978). Improved colorimetric method for determining nitrate and nitrite in foods. J Assoc Official Anal Chem 61(6): 1389–1395.

    <!-- [if !supportLists]-->33.  <!--[endif]-->Chapman HD, Pratt PF (1961). Methods of Analysis for Soil, Plants and Water. University of California, Division of Agricultural Science, Berkeley, CA, USA, pp: 56–63.

    <!-- [if !supportLists]-->34.  <!--[endif]-->Wolf B (1982). A comprehensive system of leaf analysis and its use for diagnosing crop nutrients status. Commun Soil Sci Plant Anal 13: 1035–1059.

    <!-- [if !supportLists]-->35.  <!--[endif]-->Lachica M, Aguilar A, Yanez J (1973). Analisis foliar. Métodos utilizados enla Estaci Ln Experimental del Zaidin. Anales de Edafologia y Agrobiologia 32: 1033–1047.

    <!-- [if !supportLists]-->36.  <!--[endif]-->Semida WM, Rady MM (2014). Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.). Sci Hortic 168: 210–217.

    <!-- [if !supportLists]-->37.  <!--[endif]-->Xiong L, Zhu JK (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25: 131–139.

    <!-- [if !supportLists]-->38.  <!--[endif]-->Abbasi GH, Akhtar J, Anwar-ul-Haq M, Ali S, Chen ZH, Malik W (2014). Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pak J Bot 46: 135–46.

    <!-- [if !supportLists]-->39.  <!--[endif]-->Bargaz A, Nassar RMA, Rady MM, Gaballah MS, Thompson SM, Brestic M, Schmidhalter U, Abdelhamid MT (2016). Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency. J Agron Crop Sci 202(6): 497–507.

    <!-- [if !supportLists]-->40.  <!--[endif]-->Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Manag 129: 62–68.

    <!-- [if !supportLists]-->41.  <!--[endif]-->Novak JM, Busscher WJ, Watts DW, Amonett JE, Ippolito JA, Lima IM, Gaskin J, Das KC, Steiner C, Ahmedna M, Djaafar R, Schomberg H (2012). Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci 177: 310–320.

    <!-- [if !supportLists]-->42.  <!--[endif]-->Munns R, Tester M (2008). Mechanisms of salinity tolerance. Ann Rev Plant Biol 59: 651–681.

    <!-- [if !supportLists]-->43.  <!--[endif]-->Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144: 175–187.

    <!-- [if !supportLists]-->44.  <!--[endif]-->Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48: 271–284.

    <!-- [if !supportLists]-->45.  <!--[endif]-->Semida WM, Abd El-Mageed TA, Howladar SM, Rady MM (2016). Foliar-applied α-tocopherol enhances salt-tolerance in onion plants by improving antioxidant defence system. Aust J Crop Sci 10(7): 1835–2707.

    <!-- [if !supportLists]-->46.  <!--[endif]-->Ueda A, Yamamoto-Yamane Y, Takabe T (2007). Salt stress enhances proline utilization in the apical region of barley roots. Biochem Biophys Res Commun 355: 61–66.

    <!-- [if !supportLists]-->47.  <!--[endif]-->Ashfaque F, Khan MIR, Khan NA (2014). Exogenously applied H2O2 promotes proline accumulation, water relations, photosynthetic efficiency and growth of wheat (Triticum aestivum L.) under salt stress. Ann Res Rev Biol 4: 105–120.

    <!-- [if !supportLists]-->48.  <!--[endif]-->Sakr MT, El-Sarkassy NM, Fuller MP (2015). Minimization the effects of salt stress on sweet pepper plants by exogenous protectants application. Zagazig J Agric Bot 42(6): 1397–1410.

    <!-- [if !supportLists]-->49.  <!--[endif]-->Matysik JB, Alia B, Mohanty P (2002). Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5): 525–532.

    <!-- [if !supportLists]-->50.  <!--[endif]-->Del Río LA, Sandalio LM, Corpas FJ (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production scavenging, and role in cell signaling. Plant Physiol 141: 330–335.

    <!-- [if !supportLists]-->51.  <!--[endif]-->Foyer CH, Lelandais M, Edwards EA, Mullineaux PM (1991). The role of ascorbate in plants, interactions with photosynthesis and regulatory significance. In Active Oxygen/Oxidative Stress and Plant Metabolism (Pell E, Steffen K, Eds). Amer Soc Plant Physiol, Rockville, MD, p: 131–144.

    <!-- [if !supportLists]-->52.  <!--[endif]-->Gairola S, Umar S, Suryapani S (2009). Nitrate accumulation, growth and leaf quality of spinach beet (Beta vulgaris Linn.) as affected by NPK fertilization with special reference to potassium. Ind J Sci Technol 2: 35–40.

    <!-- [if !supportLists]-->53.  <!--[endif]-->Benbrook C, Zhao X, Yanez J, Davies N, Andrews P (2008). New evidence confirms the nutritional superiority of plant-based organic foods. State of science review. The Organic Center: Boulder.

    <!-- [if !supportLists]-->54.  <!--[endif]-->Kabata-Pendias A, Pendias H (2001). Trace elements in soils and plants. 3rd ed. CRC Press, Boca Raton.

    <!-- [if !supportLists]-->55.  <!--[endif]-->Baranski M, Srednicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Benbrook C, Biavati B, Markellou E, Giotis C, Gromadzka-Ostrowska J, Rembiałkowska E, Skwarło-Sonta K, Tahvonen R, Janovska D, Niggli U, Nicot P, Leifert C (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. British J Nutr 112: 794–811.

    <!-- [if !supportLists]-->56.  <!--[endif]-->Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009). Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36: 1110–1119.

    <!-- [if !supportLists]-->57.  <!--[endif]-->Gharsa MA, Parre E, Debez A, Bordenava M, Richard L, Leport L, Bouchereau A, Savoure A, Abdelly C (2008). Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation J Plant Physiol 165: 588–59

     

    [This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).]

    Author Details


    Mostafa M. Rady
    Department of Botany
    Fayoum University
    mmr02@fayoum.edu.eg