Submission Open for IJEER Volume-3, Number-10, October 2019 | Submission Deadline- 20 October, 2019

International Journal for Empirical Education and Research

A Detail on Landslide & its Types

Author: Rudolf Vukelic | Published on: 2017-11-30 18:59:50   Page: 19-27   295

Abstract
The term landslide or, less frequently, landslip, refers to several forms of mass wasting that include a wide range of ground movements, such as rock falls, deep-seated slope failures, mudflows and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients: from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides. Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability which produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event (such as a heavy rainfall, an earthquake, a slope cut to build a road, and many others), although this is not always identifiable.

Keywords
Causes; Types; Historical Landslides.

Cite this Article

×

Vukelic, R. (2017), A Detail on Landslide & its Types. International Journal For Empirical Education and Research, 1(3), 19-27.

  • Download Citation
  • ×

    Vukelic, R. (2017) "A Detail on Landslide & its Types", International Journal For Empirical Education and Research, 1(3), pp.19-27.

  • Download Citation
  • ×

    Vukelic, R.. A Detail on Landslide & its Types. International Journal For Empirical Education and Research. 2017; 1(3): 19-27.

  • Download Citation
  • ×

    Appeared

    ×

    Appeared

    ×

    Vukelic, R.. A Detail on Landslide & its Types. International Journal For Empirical Education and Research. 2017; 1(3): 19-27.

  • Download Citation
  • ×

    Vukelic, R.. A Detail on Landslide & its Types. International Journal For Empirical Education and Research. 2017; 1(3): 19-27.

  • Download Citation

  • Reference

    1. Di Maio, Caterina; Scaringi, Gianvito; Vassallo, R (2014-01-01). "Residual strength and creep behaviour on the slip surface of specimens of a landslide in marine origin clay shales: influence of pore fluid composition". Landslides. 12 (4): 657–667. Doi: 10.1007/s10346-014-0511-z.
    2. Chiarle, Marta; Luino, Fabio (1998). "Colate detritiche torrentizie sul Monte Mottarone innescate dal nubifragio dell'8 luglio 1996". La prevenzione delle catastrofi idrogeologiche. Il contributo della ricerca scientifica (conference book). pp. 231–245.
    3. Arattano, Massimo (2003). "Monitoring the presence of the debris flow front and its velocity through ground vibration detectors". Third International Conference on Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (debris flow): 719–730.
    4. Easterbrook, Don J. (1999). Surface Processes and Landforms. Upper Saddle River: Prentice-Hall. ISBN 978-0-13-860958-0.
    5. Le Bas, T.P. (2007), "Slope Failures on the Flanks of Southern Cape Verde Islands", in Lykousis, Vasilios, Submarine mass movements and their consequences: 3rd international symposium, Springer, ISBN 978-1-4020-6511-8
    6. Schuster, R.L. & Krizek, R.J. (1978). Landslides: Analysis and Control. Washington, D.C.: National Academy of Sciences.
    7. Renwick, W.; Brumbaugh, R.; Loeher, L (1982). "Landslide Morphology and Processes on Santa Cruz Island California". Geografiska Annaler. Series B, Physical Geography. 64 (3/4): 149–159. Doi: 10.2307/520642. JSTOR 520642.
    8. Johnson, B.F. (June 2010). "Slippery slopes". Earth magazine. pp. 48–55.
    9. Mitchell, N (2003). "Susceptibility of mid-ocean ridge volcanic islands and seamounts to large scale landsliding". Journal of Geophysical Research. 108 (B8): 1–23. Bibcode: 2003JGRB...108.2397M. doi: 10.1029/2002jb001997.
    10. Chen, Zhaohua; Wang, Jinfei (2007). "Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada". Natural Hazards. 42: 75–89. Doi: 10.1007/s11069-006-9061-6.
    11. Clerici, A; Perego, S; Tellini, C; Vescovi, P (2002). "A procedure for landslide susceptibility zonation by the conditional analysis method1". Geomorphology. 48 (4): 349–364. Bibcode: 2002Geomo...48...349C. Doi: 10.1016/S0169-555X (02)00079-X.
    12. Cardenas, IC (2008). "Landslide susceptibility assessment using Fuzzy Sets, Possibility Theory and Theory of Evidence. Estimación de la susceptibilidad ante deslizamientos: aplicación de conjuntos difusos y las teorías de la posibilidad y de la evidencia". Ingenieria e Investigación. 28 (1).
    13. Cardenas, IC (2008). "Non-parametric modeling of rainfall in Manizales City (Colombia) using multinomial probability and imprecise probabilities. Modelación no paramétrica de lluvias para la ciudad de Manizales, Colombia: una aplicación de modelos multinomiales de probabilidad y de probabilidades imprecisas". Ingenieria e Investigación. 28 (2).
    14. Metternicht, G; Hurni, L; Gogu, R (2005). "Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments". Remote Sensing of Environment. 98 (2–3): 284–303. Bibcode: 2005RSEnv...98...284M. doi:10.1016/j.rse.2005.08.004.
    15. De La Ville, Noemi; Chumaceiro Diaz, Alejandro; Ramirez, Denisse (2002). "Remote Sensing and GIS Technologies as Tools to Support Sustainable Management of Areas Devastated by Landslides" (PDF). Environment, Development and Sustainability. 4 (2): 221–229. Doi: 10.1023/a: 1020835932757.
    16. Fabbri, Andrea G.; Chung, Chang-Jo F.; Cendrero, Antonio; Remondo, Juan (2003). "Is Prediction of Future Landslides Possible with a GIS?” Natural Hazards. 30 (3): 487–503. doi:10.1023/B:NHAZ.0000007282.62071.75.
    17. Lee, S; Talib, Jasmi Abdul (2005). "Probabilistic landslide susceptibility and factor effect analysis". Environmental Geology. 47 (7): 982–990. Doi: 10.1007/s00254-005-1228-z.
    18. Ohlmacher, G (2003). "Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA". Engineering Geology. 69 (3–4): 331–343. Doi: 10.1016/S0013-7952(03)00069-3.
    19. Rose & Hunger, "Forecasting potential slope failure in open pit mines", Journal of Rock Mechanics & Mining Sciences, February 17, 2006. August 20, 2015.
    20. Weitere Erkenntnisse und weitere Fragen zum Flimser Bergsturz Archived 2011-07-06 at the Wayback Machine A.v. Poschinger, Angewandte Geologie, Vol. 11/2, 2006
    21. Fort, Monique (2011). "Two large late quaternary rock slope failures and their geomorphic significance, Annapurna, Himalayas (Nepal)". Geografia Fisica e Dinamica Quaternaria. 34: 5–16.
    22. Weidinger, Johannes T.; Schramm, Josef-Michael; Nuschej, Friedrich (2002-12-30). "Ore mineralization causing slope failure in a high-altitude mountain crest—on the collapse of an 8000 m peak in Nepal". Journal of Asian Earth Sciences. 21 (3): 295–306. Bibcode: 2002JAESc...21...295W. Doi: 10.1016/S1367-9120(02)00080-9.
    23. Peres, D. J.; Cancelliere, A. (2016-10-01). "Estimating return period of landslide triggering by Monte Carlo simulation". Journal of Hydrology. Flash floods, hydro-geomorphic response and risk management. 541: 256–271. Bibcode: 2016JHyd...541...256P. doi:10.1016/j.jhydrol.2016.03.036.
    24. "Large landslide in Gansu Zhouqu August 7". Easyseosolution.com. August 19, 2010. Archived from the original on August 24, 2010.

    [This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).]

    Author Details


    Rudolf Vukelic
    College of Agriculture & Environmental Sciences
    Makerere University
    vukelicrudolf079@yahoo.com